Al - Path Finding

Introduction

So far, we’ve looked at how an Al agent within our games can make fundamental decisions on what
cause of action to take next, using variations on finite state machines. At some point in most games,
though, an AI agent is going to want to move somewhere in the world - chasing the player, finding
health packs, or being directed to move from one base to another. Such behaviour requires additional
knowledge about the world within which the Al is operating, so that the Al knows which regions of
the world can be moved in, and which are impassible (or perhaps undesirable ) to move in. Usually,
we also want an Al agent to move in the most efficient manner possible - if there’s a lift from the top
floor to the bottom, why take the stairs?

In this tutorial, we're going to take a look at the process of pathfinding, and how game levels can

be represented as nodes in a graph, and how the A* path searching algorithm can return accurate
paths in an efficient manner.

Pathfinding

There are a variety of reasons why we might need to calculate a path from point A to point B in our
game environments:

The ghosts eyes heading back to base after Pac-Man has eaten them.

The bad guys in Deus Ezr or Metal Gear Solid heading toward the place where an alarm has
been tripped, or the player has been spotted.

Yorda running to the player when called for by Ico.

The golden thread showing where to go next in Fable.
e The route plotted on the map to the desired destination in Red Dead Redemption.

In order to perform any of these tasks in our game code, we are going to have to implement some
sort of pathfinding component, so that we can ask the game world what the best possible path from
one position to another is. This process consists of three main components:

e Represent the environment as a graph of small navigable units or nodes.
e Find a route connecting a series of these nodes from the starting point to the target location.

e Move the Al agent along that route convincingly.

Representing the environment

We can represent a game world as a series of interconnected areas - rooms connect to corridors and
hallways, which may then connect to an outside area, and so on. Perhaps even within a single room
there could be multiple areas - the desks in the computer lab present obstacles that must be moved
around to get from one end to another. To represent either of these concepts in our game world, we
need to think of a way of subdividing a world into areas that are traversable, and those that are not.
One such method could be to subdivide the entier play area up into a grid of regular shapes, like
squares or hexagons. Here’s an example of doing this, for the play area of Pac-Man:



On the left we have the classic Pac-Man maze, as it was in the original arcade game. On the right
we have the same maze, but as a grid - black regions are the impassable walls, grey are the paths that
Pac-Man and the ghosts can take, and white are areas completely outside of the play region. In this
example, the idea of a grid of squares maps very well onto the original game maze, as it was actually
drawn on the screen as a set of square tiles. This doesn’t mean that pathfinding can only be done
on tile based-grids - the roads in a racing game can be represented as a series of square areas in a
completely polygonal world.

While the Pac-Man maze above is easily thought of as a grid, its also clear that there are impassable
regions, and that there is therefore not necessarily free movement from one node to any of its neigh-
bours. This could be represented as a 2D array of booleans, with ’true’ for passable areas and ’false’
for walls, but even in a game as simple as Pac-Man this wouldn’t work properly all of the time. Why
is this? At the left and right hand side of the Pac-Man maze there’s a tunnel - if Pac-Man goes down
the left hand side tunnel, he immediately reappears on the right, and vice-versa.

To represent the maze in Pac-Man, tunnel and all, we can instead model the whole thing as a graph;
each square of the maze is a node, and if Pac-Man can travel from that node to another, we can say
that there’s an edge between the nodes. By doing this, we can free up the spatial position of the
nodes from whether it is connected to the node or not, so now the left tunnel and right tunnel can be
connected with an edge, even though they’re on opposite sides of the maze. Perhaps the edges in a
grid representation aren’t necessarily bi-directional - you can only really travel in one direction on an
escalator, so perhaps there’s an edge indicating that its possible to go from bottom to top, but not
back down again.

The A* Algorithm

In order for a ghost to find and eat Pac-Man, there needs to be some way in which the graph of the
maze can be traversed, from the ghost’s node, to Pac-Man’s node. In the Pac-Man maze, there’s
always a path from point A to point B (there’s no doors or escalators here!), so there’s a multitude of
different ways to get from the ghost’s position to the position of the player. Ideally, the hungry ghost
would find the fastest path from their node to Pac-Man’s, so our pathfinding algorithm needs to find
not just a path, but the best path.

The algorithm we will be looking at to determine the best path in a graph is the A* (CA star’)
algorithm, which has long been used within the games industry for its ability to quickly find good
paths in a game world, and for its ease of adaption to different gameplay scenarios. A* is a best-first
search, which means that when trying to find the best path from A to B, it will find the neighbouring
node with the best score according to some metric that determines that node’s suitability for the given
path.



The metric by which A* determines which node to travel to next as it traverses the graph in the
search for the best path is determined by a simple calculation:

f=g9+h

The value g represents the cost of moving from the starting point to the considered node, following
the currently assumed ’best’ path. The h value represents the heuristic, and is a simple measurement
of how far away the considered node is from the goal. It can only be a heuristic (meaning a guess!),
as there could be obstacles or winding routes through the world to get from one point to another, but
something as simple as the Euclidean distance from a considered node to the destination is a good
indicator of which node should be examined next by the A* algorithm.

Characteristics of A*

At the most abstract level, the algorithm works by, for a given node, expanding to one of its neigh-
bouring nodes (meaning there is an edge in the graph from one to the other) based on which node
has the best f score, as described above, and then repeating this step until the destination is reached.
Sounds logical, and perhaps even too easy! The algorithm gets more complicated, and to see why,
let’s look at the following basic maze:

Here, grey nodes are impassible walls, the red node is our starting point, and the green node is the
destination. By visual inspection, we can see that of the two nodes that could be travelled to from the
red starting node, that point A is closer to the green destination than point B (it has a better heuristic
score), and so will be chosen by A* to move to next. However from node A there’s actually no way of
getting to the destination without travelling through point B, making point A actually pointless, and
so shouldn’t be considered as a part of the 'best’ path from red to green.

The open list and closed list

To represent this idea of trying out nodes that may not be part of the final path from one point to
another, A* has the concept of an open list and a closed list, bot containing graph nodes that have
at some point either been visited, or which may be visited. When the A* algoroithm reaches a node
for the first time, and wants to try and determine which way to go, it places all of the neighbours of
that node in the open list, calculates f for them all, and then picks the node with the best f value out
of that list. So after one iteration of trying to solve the path above, nodes A and B would both be
added to the open list, and then node A would be selected for further consideration, as it appears to
be closer to the destination.

As A actually has no neighbours (other than the starting node...), the algorithm actually cannot
continue down the path of A. Once a node has been processed (whether it is continued on with or
not), it is placed on the closed list, which is essentially a history of considered nodes. However, there’s
still a node in the open list, B, so the algorithm can actually continue, by removing B from the open
list and processing it - the node to the left of B will be added to the open list, and will then be
considered the ’best’ node as there’s no other nodes.



Node parents

So far, we know that the closed list contains every node the algorithm has processed, and so also that
eventually, some combination of some of those closed list nodes will form a path. Assume that in our
example the algorithm has iterated several times, and has generated the following set of nodes:

When node C is ’expanded’, the destination will be added to the open list, as it is connected to C.
If the destination node is ever found via expansion, then there must be a path! To actually calculate
the path, a node in the graph has a concept of a parent node, as well as neighbours. This parent
starts off as the node which was processed when the node was added to the open list. By following
the chain of parent nodes from the destination, eventually the nodes which form the best path will be
found:

Updating node parents

Sometimes, when expanding nodes through the graph, it could be that a node is visited again. Consider
the following example maze :

The blue nodes represent nodes that have been added to the open list, and the purple node is the
node currently about to be processed by the A* algorithm. As node A is a neighbour of the purple
node, it should be expanded into the open list. In the next iteration of the A* algorithm, it picks the
best node in the list. Perhaps, due to a combination of diagonal costs or some other metric, instead
of picking A to be the best node in the list, node B is instead picked to be the best next step. The
algorithm will then continue on, until eventually we get to this situation:



Following the path has reached the new point B, meaning that A is now to be added to the open
list - but it’s already in the open list! However, while its h score is still the same (it’s still the same
distance away from the destination that it was when it was first found!), the ¢ score could be less,
as the path to get to it via the bottom path is slightly shorter than the top path. In this situation,
the ’parent’ of node A should change from being the purple node, to being node B, and the node’s g
score updated, so that when the path is finally completed, the path is routed through B:
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By updating the g score and parent whenever possible, we ensure that no redundant loops or
wrong turns are included in the path - following the parents will always lead to the source node in
the fastest route possible.

Edge traversal cost

So far, although we’ve introduced the idea of their being a traversal cost to go from node to node,
which gets summed into the g cost, we’ve not really elaborated on what this cost might be. In the
Pac-Man maze, Pac-Man can only move in 4 directions - up, down, left, and right. So maybe the cost
is always the same, maybe ’1’. But what about games where diagonal movement is allowed? Perhaps
the cost to move diagonally is about 1.4 (approximately the square root of 2). This means that it is
more beneficial to move diagonally in the graph search:
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We can therefore encode the difference between moving in straight lines and moving diagonally in
each node by adding a cost to each edge. We can extend this concept further by considering additional
costs for traversing a particular edge - maybe the path from node to node requires the Al character

to swim, and is therefore slower and more dangerous than walking on ground? Consider the following
simple grid area:
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Seems that either going along the top path, or the bottom path will be exactly the same, and it
doesn’t matter which path is generated. But what if we added some 'water’ tiles in?
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If we make each edge going into a 'water’ node have a cost of 10 instead of 1, then the A* algorithm
will always then generate the lower path. The pathfinding code doesn’t ’know’ what a water tile is,
or any other details about the map, but as long as the edge cost has been encoded in the graph, the
‘correct’ result will always be generated by the A* algorithm.

Heuristic Difficulties

Now that we know more of the broad details of how the A* algorithm determines a path, let’s think
back to the Pac-Man game, where there was a tunnel that allowed Pac-Man to quickly loop around
to the other side of the maze. We can reduce this down to a simple little test maze:

If we assume that the cost of going through the tunnel is '1’, as with going to any other node,
then clearly to get from the red node to the green node, the tunnel is the best path to take. But
which path will A* actually take? Due to the A* f calculation, A* will actually go left through the
maze, rather than right and through the tunnel. The heuristic calculation usually used in A* is either
Euclidean distance (calculating the length of the vector from source to destination), or sometimes the
Manhatten distance:
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Unfortunately, the tunnel is a little bit 'non-Euclidean’ in that going right actually makes you go
left. This can be solved in a couple of different ways. One way could be to preprocess the grid, so
that the h cost is stored per node, rather than calculated when the node is added to the open list,
allowing it to be loaded up with the rest of the level data. To store the h cost to every node from
every node can get quite expensive, though! An alternative would be to tag nodes as being ’special’
and needing extra processing - perhaps if a node knows it is connected to a 'non-Euclidean’ node, the
calculated heuristic is insatead the distance from the end point to the goal, rather than the distance
form the node itself. This only works if the node ever gets to be considered in the open list - if a path
is expanded straight into the opposite direction, this wouldn’t work.

If there is to be only one such ’special’ node in the game world, the heuristic calculation could always
take this into consideration, with the distance being the minimum of either the Euclidean distance to
the goal, or the sum of the Euclidean distance to the ’special’ node, plus the distance from the end
point of the ’special’ node to the destination. This would allow any Al character in the game world
take into consideration whether it is worthwhile heading towards the magic tunnel in Pac-Man, or
instead just go the more ’realistic’ route.

Tutorial Code

To investigate the A* algorithm, we’re going to expand the codebase to use it for some pathfinding.
The code already has some classes relating to pathfinding; notably the NavigationMap class, which
is an abstract class designed to represent anything that can provide a NavigationPath - a series of
Vector3s representing waypoints that an Al can move through to get from one position to another
in the game world:
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#pragma once
#include "../../Common/Vector3.h"
#include "NavigationPath.h"
namespace NCL {
using namespace NCL::Maths;
namespace CSC8503 {
class NavigationMap {
public:
NavigationMap () {}
“NavigationMap () {}
virtual bool FindPath(const Vector3& from, const Vector3& to,
NavigationPath& outPath) = 0;
};
3
}

NavigationMap class header

NavigationGrid Class

There’s also a concrete implementation of a grid-based navigable area - NavigationGrid. As with
the other classes we’ve looked at in this module, it’s already defined for you, but several of its functions
are currently empty. Here’s its class declaration, from the NavigationGrid.h file:

#pragma once
#include "NavigationMap.h"
#include <string>
namespace NCL {
namespace CSC8503 {
class NavigationGrid : public NavigationMap {
public:
NavigationGrid () ;
NavigationGrid(const std::string&filename);
“NavigationGrid () ;

bool FindPath(const Vector3& from, const Vector3& to,
NavigationPath& outPath) override;
protected:
bool NodeInList (GridNode* n,
std::vector<GridNode*>& list) const;
GridNode* RemoveBestNode (std::vector<GridNode*>& list) const;
float Heuristic (GridNode* hNode, GridNode* endNode) const;
int nodeSize;
int gridWidth;
int gridHeight;

GridNodex allNodes;
};
} //end of CSC8503 namespace
} //end of NCL namespace

NavigationGrid class header

It stores a number of objects designed to represent a node in a grid-based graph, along with some
currently empty functions - their usage in the A* algorithm should be fairly intuitive based on just
their names.
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GridNode Struct

You have been provided with a struct to represent a node in a graph suitable for pathfinding with.
It’s defined in the NavigationGrid.h file, and looks like this:

struct GridNode {
GridNode* parent;

GridNode* connected [4];
int costs [4];

Vector3 position;

float f;
float g;

int type;

GridNode () {
for (int i = 0; i < 4; ++i) A
connected[i] = nullptr;
costs[i]l = 0;

X

f = 0;

g = 0;

type = 0;

parent = nullptr;

NavigationGrid class header

Implementing A*

Each GridNode has a set of pointers to nodes it might be connected to, and the associated costs in
navigating from one node to another. Along with that, we also have the per-node variables we need
for the A* algorithm to work - we store a f and ¢ value, along with a ’parent’ node for storing the
best path from one node to another, and a position to represent the centre of that node in the world
coordinates of our virtual environment.

The first of our empty methods is NodelnList, which will take an std::vector of GridNodes, and
return whether the passed in GridNode parameter is in the list or not. Add the following code, to
replace the simple 'return false’ that’s currently in there:

bool NavigationGrid::NodeInList(GridNode* n,
std::vector<GridNodex*>& 1list) const {
std::vector<GridNodex*x>::iterator i =
std::find(list.begin(), list.end(), n);
return i == list.end() ? false : true;
}

NavigationGrid::NodelnList method

The NodelnList method is a pretty big indicator that we might be using an std::vector to represent
our open and closed lists! We’ll see a bit more evidence in our next ’empty’ method, RemoveBestNode.
Recall from the theory outlined earlier that in A* we maintain an open list, and iteratively try and
find the best node within the open list to try and expand towards our goal node. To implement the
algorithm, then, we’ll need a method that can search through a std::vector, and find the GridNode
with the lowest f cost - recall that f is the sum of g and h, and thus consists of the distance travelled to
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get to a node, and a prediction of how far away that node is from the destination. Add the following
code to the empty RemoveBestNode method in the NavigationGrid.cpp file:

NavigationGrid::GridNode* NavigationGrid::RemoveBestNode (
std::vector<GridNode*>& 1list) const {
std::vector<GridNode*>::iterator bestI = list.begin();
GridNode* bestNode = *1list.begin();
for (auto i = list.begin(); i != list.end(); ++i) {
if ((*¥i)->f < bestNode->f) {
bestNode = (*i);
bestl = i;
+
}

list.erase(bestI);
return bestNode;

NavigationGrid::RemoveBestNode method

We simply iterate through the passed in list, and keep track of which GridNode currently has
the best f score, such that after the for loop has completed, bestl will always contain the best node
- we can then remove it from the vector (line 13) and return the GridNode (line 14). Remember,
erasing a pointer from a vector doesn’t delete the object the pointer is pointing at!

For our example heuristic calculation, we're going to simply use Euclidean distance, so add in the
following code to the Heuristic method, the usage of which we’ll see shortly:

float NavigationGrid::Heuristic(GridNode* nl, GridNode* n2) const {
return (nl->position - n2->position).Length();

}

NavigationGrid::Heuristic method

The real implementation of A* is within the FindPath method, which will taken in two world posi-
tions, and fill in a NavigationPath, returning true if a path can be found, and false if not. Start off
the FindPath method by adding the following code:

bool NavigationGrid::FindPath(const Vector3& from,
const Vector3& to, NavigationPath& outPath) {
//need to work out which node ’from’ sits in, and ’to’ sits in
int fromX = (from.x / nodeSize);
int fromZ = (from.z / nodeSize);
int toX = (to.x / nodeSize);
int toZ = (to.z / nodeSize);
if (fromX < 0 || fromX > gridWidth - 1 ||
fromZ < 0 || fromZ > gridHeight - 1) {
return false; //outside of map region!
}
if (toX < 0 || toX > gridWidth - 1 ||
toZ < 0 || toZ > gridHeight - 1) {
return false; //outside of map region!
}

NavigationGrid::FindPath method
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The FindPath method takes in world space positions, but internally operates on a grid of GridNodes;
so we’ll have to in some way work out which node equates to which position. To do so, we can divide
the positions we receive by how many units in size each node will be - doing this for the z and z axes
gets us two integers for each position (lines 4+5, and lines 7+8), which we can use as indices into an
array of GridNodes. Before we continue on to the algorithm properly, we need to make sure these
integers are actually valid for indices - if an Al is somehow placed outside of the world map, the quick
calculations for from and to could end up being less than 0, or greater than how many nodes we have,
which would mean we’d end up accessing invalid memory!

With the two indices per position started, we can then determine the actual start and end nodes,
making startNode and endNode. The NavigationGrid class stores a flat list of GridNodes, we we need
to turn our 2 coordinates into 1 index, by multiplying the Z value by how many nodes we have on
each row, and then adding on how many into that row we want. This is pretty much exactly the same
as what we did to determine indices back in the index buffering tutorial:

GridWidth = 9
|
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Alndex =51=(5*9) +6

GridHeight = 8

Now that the starting node and end node of the graph have been found, we can start to actually
calculate an A* path between them. To represent the open and closed list outlined earlier, we’re going
to use std::vectors - these will work fine for demonstrating the algorithm, but you should start to
think about which C++ containers would be a better fit for this task.

GridNode* startNode = &allNodes[(fromZ * gridWidth) + fromX];
GridNode* endNode = &allNodes [(toZ * gridWidth) + toX];

std::vector<GridNode*> openlList;
std::vector<GridNode*> closedList;

openlist.emplace_back(startNode) ;
startNode->f = 0;
startNode->g = 0;

startNode ->parent = nullptr;

GridNode* currentBestNode = nullptr;

NavigationGrid::FindPath method

We prime the open list with our starting node - the A* algorithm will then begin, by finding the
best node current in the open list, and then operating on it and its neighbours. Each GridNode
searched will have an f and g score, which may change over time if better paths to a node ar ever
found. So, to start the algorithm off, we give our starting node an f and g score of 0 each - we didn’t
have to travel anywhere yet!

The next code is the A* implementation properly. While we have nodes left to consider in the
open list, we find the ’best’ node to remove from it using the RemoveBestNode method that we filled
out earlier. At some point, if a path can be found between the start and end, then the destination
node will be found within the open list - so on line 35 we check for this case. In such cases, we can start
building up a route from the destination node back to the starting node by following the GridNode
parent variables - they will always point to the best way to get to the next node in the path. By
putting the node positions inside the outPath variable, we can return a set of 'waypoints’ that an Al
can aim torwards on its way to its destination.

10
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while (!openList.empty()) {
currentBestNode = RemoveBestNode (openlList);

if (currentBestNode == endNode) {//we’ve found the path!
GridNode* node = endNode;
while (node != nullptr) {
outPath.PushWaypoint (node->position);
node = node->parent; //Build up the waypoints
}
return true;
}
else {
for (int i = 0; i < 4; ++i) {
GridNode* neighbour = currentBestNode->connected[i];
if (!neighbour) { //might not be connected...
continue;
}
bool inClosed = NodeInList(neighbour, closedList);
if (inClosed) {
continue; //already discarded this neighbour...

}

float h = Heuristic(neighbour , endNode) ;
float g = currentBestNode->g + currentBestNode->costs[i];
float £ h + g;

bool inOpen = NodeInList (neighbour, openList);

if (!inOpen) { //first time we’ve seen this neighbour
openlList.emplace_back(neighbour);
3
//might be a better route to this node!
if (!inOpen || £ < neighbour->f) {
neighbour ->parent = currentBestNode;
neighbour ->f = f;
neighbour->g = g;

}

closedList.emplace_back (currentBestNode) ;

}

return false; //open list emptied out with no path!

NavigationGrid::FindPath method

The more likely case is that the best node in our open list is not the destination node, and so on
line 44 we start the process of expanding the algorithm through the graph, by iterating through every
possible neighbour (note that in cases where there’s not a connection between adjacent GridNNodes,
we must skip over them in line 47). As part of the A* algorithm, we add processed nodes to a ’closed
list’” indicating that we no longer need to consider them, even if we expand into them again later on,
so on line 49 we work out if we’ve already seen this node, and if so, just move on to the next one.

If this is a new node, we need to calulate the h, g, and f scores for it. The h value is always
calculated using the Heuristic method we filled out earlier, while g is the sum of the best node’s
current g cost, plus the cost to move to this neighbouring node (remember, different node traversals
might have different costs associated with them, such as rocky terrain, or a dangerous area of the map
that should be avoided), with f being the sum of & and g.

11
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If a node has been seen before, the f score calculated on line 56 might still be better than the node’s
current score (perhaps we had to traverse rocky terrain to get to it the first time, but now a path
over open ground has been discovered), so on line 64 we check for this case, and if necessary update
the node’s scores, and it’s 'parent’ node, which should always be the ’least cost’ path to the source,
as over the course of the algorithm this will build up to being the ’least cost’ from the destination to
the source. Once we’ve finished with the currently selected node and expanded the algorithm to all
of its neighbours, we can place the node in the closed list (line 70), and restart the process of trying
to guess the best node.

Main File

Now that we’ve added the new grid based pathfinding ability, we should probably test it, too. In the
CSC3223.cpp file, let’s add some code to the TestPathfinding and DisplayPathfinding functions:

vector<Vector3> testNodes;
void TestPathfinding() {
NavigationGrid grid("TestGridl.txt");

NavigationPath outPath;

Vector3 startPos (80,0,10);
Vector3 endPos (80, 0, 80);

bool found = grid.FindPath(startPos, endPos, outPath);

Vector3 pos;
while (outPath.PopWaypoint (pos)) {
testNodes .push_back (pos) ;
}
3
void DisplayPathfinding() {
for (int i = 1; i < testNodes.size(); ++i) {
Vector3 a = testNodes[i - 1];
Vector3 b testNodes [i];

Debug::DrawLine(a, b, Vector4(0, 1, 0, 1));

TestPathfinding function

This lets us see how to use our new class, and get an idea of how we could service Al requests to
find paths in an area. In TestPathfinding, we load up a text file, containing the following:

20 //how many units on each axis is each grid
10 //how many grid nodes across

10 //how many grid nodes down

XXXXXXXXXX

Kewoooonn x //Can we find a path from here

Xeoooonnn x //To here??
XXXXXXXXXX

TestGrid1.txt

12




This gives us a little maze, where 'x’ represents a wall, and ’.” represents a passable area. In the
constructor of a NavigationGrid, this file will be read in and parsed to form a grid of GridNode
objects, connected according to whether their neighbour is a wall or a floor. The first value in the file
defines how many units across each grid node is - in this case, each node is 10 units across, making
for a 100 by 100 unit world, subdivided into 10 by 10 sections.

To actually find and get a path from some position to another, we need to make a Navigation-
Path (line 5) - if a path is found, this will get filled up with Vector3s representing the centre of each
node to travel through. On line 10, we actually try and get a new path, from startPos, to endPos,
using the FindPath method we filled in earlier. Assuming the path can be found (the example values
shown above should generate a path from the top right corner to the bottom right corner), we can
then fill up a std::vector of Vector3s, representing the waypoints in out path (line 14). For an Al
character, you would instead only pop a waypoint if the AI moved close enough to a node that it
could continue on to the next one, using a distance check of the Als current position.

For now, rather than making a full AT character, we’ll just make a little test function that will
display the generated path in our world - the DisplayPathfinding method simply builds up pairs of
positions, and uses the Debug::DrawLine method to draw lines between them. Being able to see
the paths being generated in your world is a useful ability, and something you should consider adding
to any of the pathfinding systems you create for the coursework project.

Conclusion

If you've managed to do everything correctly, you should have an image similar to the following on
screen:

It doesn’t look like much, but if we trace that path out, it’ll complete the maze outlined in Test-
Gridl.txt, giving us not just a path from the top to the bottom, but the best path from the top to
the bottom. This is the core benefit of the A* algorithm - if a path can be found, it’s going to be the
best way to get from A to B. Nearly all dynamic pathfinding in games uses A* in some way, although
it may be augmented with additional calculations. In the example code we’ve used a fixed cost of
1 to go from one node to another (check the constructor of the NavigationGrid class to see this),
but it could be much more complex value - different terrains could have different costs to traverse,
and that cost could even change over time (perhaps in the game environment the temperature drops,
causing a lake to freeze, unlocking a path that was not there before, and so on). This pathfinding
algorithm can form the main method by which to get an AI character moving about in the world in
your coursework, and using it will allow for more interesting gameplay beyond just ’simple’ moving
in straight lines.

Further Work

1) Consider the operation of the open list - what would be a better container for a structure that must
be kept in an order where the "best’ node is always first? What about the closed list? Is a container
object even required for this?

2) In large game environments, many 100s of Al agents will require new paths to be generated
periodically; something that is best achieved by having threads dedicated to servicing pathfinding
requests. Investigate what changes would need to be made to modify the current pahtfinding classes
to support multiple pathfinding requests simultaneously.
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